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Abstract. Low-energy orbital magnetic dipole excitations, known as the scissors mode (SM), are studied
in alkali metal clusters. Subsequent dynamic and static effects are explored. The treatment is based on
a self-consistent microscopic approach using the jellium approximation for the ionic background and the
Kohn-Sham mean field for the electrons. The microscopic origin of SM and its main features (structure
of the mode in light and medium clusters, separation into low- and high-energy plasmons, coupling high-
energy M1 scissors and E2 quadrupole plasmons, contributions of shape isomers, etc.) are discussed. It is
shown that the scissors M1 strength acquires large values with increasing cluster size. The mode is respon-
sible for the van Vleck paramagnetism of spin-saturated clusters. Quantum shell effects induce a fragile
interplay between Langevin diamagnetism and van Vleck paramagnetism and lead to a remarkable dia-para
anisotropy in magnetic susceptibility of particular light clusters. Finally, several routes for observing the
SM experimentally are discussed.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Cg Electronic and magnetic properties of clusters
– 36.40.Gk Plasma and collective effects in clusters – 36.40.Vz Optical properties of clusters

1 Introduction

Investigation of orbital magnetism in atomic clusters (see,
e.g., [1–6]) has been of considerable interest in recent
years. Because of a possibly large number of atoms in
a cluster, the valence electrons can accede single-particle
orbitals with very high angular momenta. The occupa-
tion of these orbitals has strong impact on cluster static
magnetism (see, e.g. [1–3] and references therein) and col-
lective magnetic modes of orbital nature [1,4–6]. Two re-
markable examples are the scissors [1,4,5] and twist [6]
modes. The scissors mode (SM) is strictly correlated with
cluster deformation. It can be viewed as a small-amplitude
rotational oscillation of a spheroid of valence electrons
against a spheroid of the ionic background (hence the
name SM).

The SM is a general dynamic phenomenon already
found or predicted in different finite quantum systems.
It was first proposed [7] and observed [8] in atomic nu-
clei where it still remains a hot topic for both experimen-
tal and theoretical studies (for a review see [9]). It was
later predicted in a variety of different systems, like metal
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clusters [1,4], quantum dots [10] and ultra-cold super-
fluid gas of fermionic atoms [11]. More remarkably, it was
predicted [12] and observed [13] in a Bose-Einstein conden-
sate. All these different systems have two features in com-
mon: broken spherical symmetry and a two-component
nature (neutrons and protons in nuclei, valence electrons
and ions in atomic clusters, electrons and surrounding me-
dia in quantum dots, atoms and the trap in dilute Fermi
gas and Bose condensate).

The orbital magnetism in alkali metal clusters is de-
scribed in terms of Langevin diamagnetism and van Vleck
paramagnetism [1,2]. They are both weak and, therefore,
need to be studied in systems where strong forms of mag-
netism, like ferromagnetism, are absent. Alkali metal clus-
ters provide here a good testing ground. The SM strongly
affects the orbital magnetism. Being a low-energy mode,
the SM determines the van Vleck paramagnetism and
causes a strong anisotropy in the magnetic susceptibil-
ity [1,14]. Moreover, particular light clusters can exhibit
dia-para anisotropy, being diamagnetic along z-symmetry
axis and paramagnetic in x-, y-directions [14].

The SM has already been studied with schematic [1]
and microscopic [4,14,15] approaches. The microscopic
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calculations, though accounting for quantum shells effects,
were not fully self-consistent. A deformed Woods-Saxon
[16], rather than a self-consistent Kohn-Sham, one-body
potential was adopted. The quadrupole deformation was
deduced from other models or experimental estimates.
Certainly, we need to perform fully self-consistent cal-
culations based on the density-functional theory in or-
der to settle the subtle issues, like the fragile dia-para
anisotropy, the role of the ionic structure, triaxiality, shape
isomers, etc.

In this connection, we present a thorough study of dif-
ferent SM issues, based on the LDA Kohn-Sham func-
tional. This study not only checks out and refines the
previously obtained results (which as such is important
because of the subtle character of some effects) but also
leads to new ones. For example, investigation of the role
of shape isomers demonstrates that the SM in clusters
with N > 50 is in fact a statistical mix of contributions
from different cluster shapes. This conclusion is impor-
tant for the analysis of possible ways for the experimental
observation of the SM. The thorough discussion of exper-
imental perspectives is a further essential and new point
of the paper.

Self-consistent calculations accounting for the ionic
structure were performed for spin-saturated ground and
spin-polarized isomeric states of light sodium clus-
ters Na12 and Na16 [5]. It was found that the scissors
response remains determined basically by the global de-
formation, in spite of the fact that triaxiality and ionic
structure induce a strong fragmentation in the strength.
It was also shown that the detailed ionic structure de-
stroys locally spherical symmetry thereby causing a finite,
though very weak, M1 response (transverse optical mode)
even in clusters with zero global deformation.

Calculations of the same level of completeness be-
come prohibitive as one moves to heavier clusters. For
this reason, we are forced to use in the present pa-
per the Kohn-Sham approach with a soft jellium model
for the ionic background [17]. This simplifies greatly the
calculations and allows one to proceed to heavier clus-
ters. At the same time, the jellium approach is accu-
rate enough for the principal problems considered here.
The treatment of the electrons is fully self-consistent. We
adopt a deformed Kohn-Sham mean field using the en-
ergy functional with the Gunnarsson-Lundqvist exchange-
correlation term [18]. The cluster shape (in terms of axial
quadrupole and hexadecapole deformations) is determined
by varying the jellium deformation and minimizing the to-
tal energy of the system. The optical response in the linear
regime is calculated within the separable random-phase-
approximation (SRPA) method [19,20] self-consistently
derived from the Kohn-Sham functional. The method has
been already successfully employed for the description of
the dipole plasmon in spherical [21] and deformed [20,22]
alkali metal clusters.

In the present paper, we will consider both the optical
M1 response and static magnetic orbital effects. In Sec-
tion 2, macroscopic and microscopic treatments of the SM
are briefly outlined. In Section 3, the calculation scheme

Fig. 1. Macroscopic view of scissors mode: rigid rotation [7]
(left), and rotation within a rigid surface [1] (right).

is presented. The optical response is discussed in Sec-
tions 4 and 5. It will be shown that, in analogy with
the electric dipole plasmon in deformed clusters [20,22],
the M1 response in light clusters has a distinctive profile
determined by the deformation. Instead, due to a strong
Landau damping and contributions of shape isomers, the
response in medium clusters becomes vague and the SM
can be viewed as a statistical mix of contributions from
different cluster shapes. Besides, we discuss structure of
the residual interaction and explain a small collective shift
in SM excitations. The coupling between the high-energy
SM branch and the electric quadrupole plasmon is demon-
strated. In Section 6, the dia-para anisotropy is discussed.
In Section 7, we estimate perspectives to observe the SM
in photo-absorption, Raman scattering and inelastic elec-
tron scattering. The conclusions are given in Section 8.

2 The scissors mode: brief outline

The macroscopic and microscopic treatments of the SM in
clusters are discussed in detail in references [1,4,5]. Thus,
we give here only a brief outline for a better understanding
of the results presented in the next sections.

In the geometrical model of [7], the SM arises from
rotational oscillations of valence electrons versus the ions,
both assumed to form distinct spheroids (see left part of
Fig. 1). Following the alternative view of [1] (right part
of Fig. 1), the displacement field of the mode is a sum
of the rigid rotation and the quadrupole term (the latter
provides vanishing velocity of electrons at the surface):

u(r) = Ω × r + δ2(1 + δ2/3)−1∇(yz) (1)

where δ2 is the quadrupole deformation parameter (to
be defined in the next section). Both macroscopic
treatments, [1,7], include the rigid rotation of valence elec-
trons versus the ions with the restoring force originat-
ing from the Coulomb interaction between the electrons
and ions. The treatment [1] has the additional quadrupole
term which changes the character of the restoring force.
It originates there not from the Coulomb interaction but
from distortions of the Fermi sphere in the momentum
space thus manifesting the elastic behavior of the sys-
tem (see [1] for the detailed discussion). As was shown
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in [4], the microscopic calculations give the SM energy
and strength very close to the macroscopic estimates [1],
see equations (2, 3) below.

In axially symmetric systems, the SM is generated by
the orbital momentum fields, Lx and Ly, perpendicular to
the symmetry axis z and is characterized by the quantum
numbers |Λπ = 1+〉 where Λ is the eigenvalue of Lz and π
is the space parity. Energy and magnetic strength of the
mode can be estimated macroscopically [1,4]:

ω =
20.7
r2
s

N−1/3
e δ2 eV, (2)

B(M1) = 4〈1+ | L̂x | 0〉2µ2
b

=
2
3
Ner2ωµ2

b

� N4/3
e δ2 µ2

b (3)

where Ne is the number of valence electrons in the cluster,
rs is the Wigner-Seitz radius (in Å), and µb is the Bohr
magneton. We use here natural units me = � = c = 1.
The value B(M1) stands for the summed strength of the
degenerated x- and y-branches. The z-branch vanishes for
symmetry reasons. It is worth noting that B(M1) does
not depend on rs and so is the same for different metals.

The microscopic treatment of the SM takes into ac-
count the shell structure of the axially deformed mean
field. One can characterize the emerging single electron
states in terms of the quantum numbers of the axially
deformed harmonic oscillator (Clemenger-Nilsson basis).
These are the triplets ν = [NnzΛ] where nz labels the
number of nodes in z-direction (= symmetry axis), and N
is the principle shell number N = nz+2nr+Λ (from which
one can derive the number nr of radial nodes). The angu-
lar momenta orthogonal to the symmetry axis, L̂x and L̂y,
promote low-energy ∆N = 0 transitions inside the va-
lence shell and high-energy ∆N = 2 transitions across two
shells. One may expand the single-electron wave functions
in the spherical basis (nLΛ)

Ψν=[NnzΛ] =
∑
nL

aν
nLRnL(r)YLΛ(Ω) (4)

and then to evaluate the orbital M1 transition amplitude
between hole (ν = h) and particle (ν = p) states as

〈Ψp|L̂x|Ψh〉 ∝ δπp,πh
δΛp,Λh±1

×
∑
nL

ap
nLah

nL

√
L(L+1)−Λh(Λh±1). (5)

Equation (5) shows that the scissors mode is generated
by Λp = Λh ± 1 transitions between the components of
one and the same spherical (nL)-level. In spherical sys-
tems, (nLΛ)-states of the level (nL) are degenerate by Λ
while in deformed systems they exhibit the deformation
splitting and so may be connected by M1 transitions with
non-zero excitation energies. This is the origin of the scis-
sors mode. The energy scale of the scissors mode is de-
termined by the deformation energy splitting and so is

Table 1. Ground state deformation parameters δ2 and δ4 and
moments β2 and β4. For Na+

55 and Na+
119 the deformation pa-

rameters for the isomeric states together with their energy
deficits ∆E are also given.

Cluster δ2 δ4 β2 β4 ∆E, eV

Na+
11 0.355 0.25 0.44 0.41 -

Na+
15 0.59 –0.19 0.47 –0.02 -

Na+
19 –0.285 –0.09 –0.21 –0.02 -

Na+
27 0.33 0.08 0.36 0.17 -

Na+
35 –0.21 0.02 –0.18 0.04 -

Na+
55 0.18 –0.07 0.17 –0.05 -

–0.11 –0.07 –0.09 –0.05 0.020

Na+
119 –0.27 –0.14 –0.20 –0.06 -

0.24 –0.04 0.24 ∼ 0.004

–0.04 –0.22 –0.02 –0.18 0.024

rather small. This explains the predominantly low-energy
(∆N = 0) character of the scissors mode. Just the low-
energy branch carries most of the scissors B(M1) strength
(see also discussion in Sect. 4). The high-energy (∆N = 2)
branch of the mode is much weaker since the particle states
involved into (∆N = 2) transitions include only small
(nL)-components from the valence shell.

3 Calculation scheme

Our approach [20] employs the Kohn-Sham equations for
the electronic mean field using the energy-density func-
tional of [18]. The positive ionic background is modeled
by a soft jellium density

ρI(r) =
ρI0

1 + exp((r − R(θ))/α)
(6)

where quadrupole and hexadecapole axial deformations
are introduced through the jellium radius as

R(θ) = R0 [1 + δ2Y20(θ) + δ4Y40(θ)] . (7)

The optimal deformation parameters δ2 and δ4 are deter-
mined by minimizing the total energy. The continuum is
taken into account by a discretization procedure.

We consider the clusters Na+
11, Na+

15, Na+
19, Na+

27,
Na+

35, Na+
55, and Na+

119, which, according to jellium esti-
mates [20,22–26], exhibit axial deformations. These clus-
ters represent a broad range of sizes and, as shown in
Table 1, cover prolate (Na+

11, Na+
15, Na+

27, Na+
55) and

oblate (Na+
19, Na+

35, Na+
119) ground state shapes. More-

over, a few of them (Na+
55 and Na+

119) have shape isomers
with a tiny energy deficit ∆E ∼ 0.02 eV [20,22] and with
quadrupole deformation of opposite sign with respect to
the ground state. The largest sample Na+

119 has also a hex-
adecapole isomer.

Table 1 shows the multipole moments

βλ =
4π

3

∫
drρ0(r)rλYλ0

NeR̄λ
(8)
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with

R̄ =

√
5
3
r2 =

√
5
3

∫
drρ0(r)r2∫
drρ0(r)

,

where λ = 2, 4 and ρ0(r) is the ground state density of va-
lence electrons. The dimensionless multipole moments βλ

are less model dependent because they are computed from
expectation values. Thus they can serve for robust charac-
terization of the deformation and for comparison between
different models. The quantities δλ in the jellium model (6)
coincide with the βλ for small deformation.

The optical response is calculated in the framework of
the random phase approximation (RPA). Full RPA for de-
formed systems is extremely involved. Thus we employ a
self-consistent approximation of RPA where the residual
interaction is expanded into a sum of separable terms [20].
The expansion employs local one-body operators Qλ1p(r)
whose structure is self-consistently designed to map the
response mean-field in RPA. The generating operators to
which response is explored are chosen to cover the leading
multipole operators. The expansion coefficients are com-
puted self-consistently as well. This procedure was shown
to provide a sufficiently precise reproduction of the exact
residual interaction [20].

For the description of the SM, we used the basis of
generating operators

f21p = r2+p(Y21(θ) + Y †
21(θ)), p = 0, 2, 4,

f41p = r4+p(Y41(θ) + Y †
41(θ)), p = 0, 2. (9)

The same set of operators was exploited for the descrip-
tion of λµ = 21 branch of the quadrupole plasmon [20].
The close similarity between scissors and quadrupole fields
was discussed in [4]. The p = 0 component of the input
field f210 has the form of an external quadrupole field.
It generates the leading term of the separable interaction
which is peaked at the surface of the system. The next
two quadrupole fields (p = 2 and 4) lead to separable op-
erators Q21p(r) which are peaked more inside the cluster.
We include also hexadecapole fields f41p in order to ac-
count for coupling between quadrupole and hexadecapole
modes. Such coupling emerges with the onset of deforma-
tion, especially in systems having both quadrupole and
hexadecapole deformations. The set of the fields (9) deliv-
ers good convergence of the separable expansion with re-
spect to the exact results. Explicit expressions for Qλ1p(r)
are given in [20].

We study the SM response in terms of
photo-absorption. In axially deformed systems, the
photo-absorption cross-section from the ground state to
an excited state j = Λπ of the excitation energy ωj is

σ(Xλµ, 0→j) =
8π3λ+1

λ[(2λ+1)!!]2
(ωj

�c

)2λ−1

|〈j|ÔX
λµ|0〉|2

(10)
where 〈j|ÔX

λµ|0〉 is the reduced transition matrix ele-
ment and ÔX

λµ is the operator of electric (X = E)
or magnetic (X = M) transitions. For the SM, we
have ÔM

11 = µbL̂x. The selections rules are µ = Λ

and (−1)λ = π for X = E or (−1)λ+1 = π for X = M .
The electric photo-absorption strength (10) will be used in
Section 7 to estimate the competition between the scissors
and low-energy electric excitations.

Useful measures for the SM are provided by the sum
rules

Sm(M1) =
∑

j

ωm
j B(M1)j (11)

for m = −1, 0, and 1. The ratios ω =
√

S1/S−1 or
ω = S1/S0 provide rough estimates for the energy cen-
troid of the low-energy mode. The S−1 is proportional to
the paramagnetic susceptibility and S1 to the integral M1
photo-absorption cross-section. The detailed values for
the Sm are obtained from explicit RPA results. A simple
estimate for S1 can be obtained using equations (2, 3):

S1(M1) =
∑

j

ωjB(M1)j ≈ 20.7
r2
s

Neδ
2
2µ2

b . (12)

Sum rules do exist also for electric excitations. The S1 can
be reduced to the simple expression [19]

S1(Eλ) =
∑

j

ωj |〈j|erλYλµ|0〉|2

=
�

2e2

8πme
λ(2λ + 1)2Ner2λ−2. (13)

4 Scissors response

The M1 optical response in light clusters is shown in Fig-
ure 2. The present Kohn-Sham calculations yield results
close to the ones obtained by using a deformed Woods
Saxon potential [4]. Only the excitation energies in pro-
late clusters are ∼0.2 eV higher, because of the larger
quadrupole deformations obtained in the self-consistent
approach. The main characteristic of the M1 response is
the occurrence of one or two prominent peaks below 1 eV.
They are only slightly shifted from their unperturbed 1ph
(particle-hole) spectrum. In the low-energy region, the 1ph
|Λπ = 1+〉 spectrum is very dilute and, therefore, does
not meet the conditions for Landau fragmentation or for
pronounced coherent superpositions. Because of these fea-
tures, the low-energy scissors strength can be associated
to well defined 1ph transitions. In the Nilsson-Clemenger
notation [NnzΛ], they are [110] → [101] in Na+

11, [211] →
[202] and [211] → [200] in Na+

15, [211] → [220] in Na+
19,

[321] → [310] and [321] → [312] in Na+
27, [310] → [321]

and [312] → [321] in Na+
35.

As is shown in Figure 2 (compare full and dashed
lines), the residual interaction induces a rather moder-
ate blue-shift that is much smaller than e.g. the shift for
the electric dipole plasmon. The underlying physics is ex-
plained in Figure 3 where the exchange-correlations and
Coulomb contributions to the leading part of the sepa-
rable operator Q211(r) are presented for the case of Na+

19
(the repulsive Coulomb is negative in this representation).
It is seen that both contributions compensate each other
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Fig. 2. Photo-absorption cross-section for the scissors mode,
weighted by the Lorentz function with the averaging param-
eter 0.25 eV. The responses with (solid curve) and without
(dashed curve) the residual interaction are presented.

to a large extent. The final outcome is a slight repulsive
interaction responsible for the blue-shift. It is worth not-
ing that the balance between these two contributions is
rather fragile and can be affected by different factors, e.g.
triaxiality and detailed ionic structure, making even the
sign of the net interaction uncertain [5].

Table 2 collects the calculated scissors strengths
summed in the wide (0−6 eV) and low-energy (0−1 eV)
regions. It is seen that the ∆N = 0 low-energy scissors
mode, being mainly concentrated below 1 eV, contributes
strongly to S−1 and S0. This justifies using S−1 and S0

for a rough estimation of the SM energy as ω =
√

S1/S−1

or ω = S1/S0. Besides, since S−1 is proportional to
the paramagnetic susceptibility, this means that just the
low-energy SM determines the van Vleck paramagnetism
(see discussion in Sect. 6). The high-energy part of the
scissors strength (associated with ∆N = 2 transitions)
contributes appreciably to the S1 sum rule, i.e. to the
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Fig. 3. Radial profile of the residual interaction in Na+
19.

Exchange-correlation (long-dashed curve) and Coulomb (shot-
dashed curve) contributions are given together with their sum
(solid curve).

Table 2. Sum rules Sm (in eV mµ2
b) calculated in the energy

region 0−6 eV. The fractions for the region 0−1 eV are given
in parenthesis.

Cluster S−1 S0 S1

Na+
11 16.5 (92%) 14.7 (72%) 21.5 (34%)

Na+
15 18.7 (84%) 19.2 (69%) 25.9 (43%)

Na+
19 11.3 (98%) 8.2 (90%) 7.4 ( 67%)

Na+
27 80.6 (96%) 35.6 (74%) 37.7 (25%)

Na+
35 38.9 (97%) 17.2 (84%) 13.3 (43%)

Na+
55 94.9 (97%) 32.6 (78%) 30.2 (26%)

Na+
119 544 (97%) 138 (80%) 103 (36%)

integral M1 photo-absorption cross-section. Table 2 also
shows that the increase of the Sm with cluster size is not
monotonous. The fluctuations are caused by the predom-
inantly 1ph character of the low-energy SM and by the
difference in cluster deformations. Na+

27 demonstrates es-
pecially strong M1 strength, while in oblate clusters Na+

19

and Na+
35 the strength is relatively weak.

Figure 4 illustrates the coupling of the high-energy
scissors branch to the quadrupole plasmon in Na+

55. The
correlation between M1 and E2 peaks at ∼3 eV is clearly
seen. The coupling of electric and magnetic modes with
the same quantum numbers Λπ is a general feature of de-
formed finite quantum systems. It is well-known, for ex-
ample, in atomic nuclei (see, e.g. [9,27]).

The coupling of the SM with dipole and spin-dipole os-
cillations in clusters was discussed in detail in reference [5].
In particular, it was shown that breaking the symmetry by
the ionic lattice results in a weak coupling between these
oscillations of the opposite space parity. This feature may
change for clusters deposited on a surface since symmetry
breaking there is even stronger.
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Fig. 4. Coupling between the high-energy scissors branch
and E2 quadrupole plasmon in prolate Na+

55. M1 and E2 photo-
absorptions are weighted by the Lorentz function with the av-
eraging parameter 0.25 eV.

5 Effects of shape isomers and ionic structure

The calculations [20,22] show that light axially deformed
clusters (Ne < 40) have one distinct minimum correspond-
ing to the ground-state deformation. The heavier clusters
(40 < Ne < 100) have usually two minima with oppo-
site quadrupole deformations (prolate and oblate) and
very close energies. The energy difference between the
ground and the shape isomeric states is often less than
0.02 eV = 200 K. The number of shape isomers with a tiny
energy deficit increases with cluster size. These isomers
may have a variety of very different shapes. Significant
amounts of isomers can be found in a thermal ensemble
and thus contribute to the SM, e.g., at room temperature.

Figure 5 compares the scissors modes built on the
ground and isomeric states in Na+

55. Both of them show
rich spectra of low-lying M1 states. But the character of
the spectra and strength distribution differs substantially.
To explain the differences, one should take in to account
that the M1 spectra are generated by several 1ph M1 tran-
sitions between the levels in the vicinity of the Fermi sur-
face. Prolate and oblate shapes yield different sequences
of the single-particle levels near the Fermi surface. As a
result, some of the 1ph M1 transitions significant in the
prolate case are transformed to 1pp or 1hh transitions in
the oblate case, thus strongly decreasing the strength.

Figure 5 compares also the SRPA results obtained with
the soft jellium model (6) as well as with detailed ionic
structure [5]. In the case of the ionic structure, the global
cluster deformations slightly deviate from those in the jel-
lium case. It is seen that calculations with the ionic struc-
ture give somewhat different positions of the SM peaks
with respect to the jellium case. Such a redistribution of
the peaks is due to different energies of the single-particle
levels in the ionic calculations. The photo-absorption re-
sponse in the ionic case is stronger, which is also explained
by the redistribution of the levels in the mean field. The

0 0.5 1

0

1

0

1

2

ω [eV]

σ
(M

1
)/

N
e
 [

Å
2

 1
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-6
]

 N a 55
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Fig. 5. The strength distribution of the scissors modes in Na+
55,

built on the prolate ground state (upper panel) and oblate first
isomer (lower panel). Jellium (solid curve) and ionic (dashed
curve) SRPA results are compared.

level sequence in this case favors a few more 1ph transi-
tions of M1 type.

Altogether, the calculations demonstrate some impor-
tant points concerning the SM in clusters of a medium
size:

(i) the mode is distributed over several 1ph transitions;
(ii) the single-particle spectrum near the Fermi level is

rather dense and so even small changes in the calcu-
lation scheme can redistribute visibly the spectrum
and open (or close) some relevant 1ph transitions;

(iii) as was mentioned above, the ground and first isomeric
states in medium-size clusters can be very close in en-
ergy. So, the SM in free medium-size clusters should
be considered as a statistical mixture of contributions
from different shapes (predominantly of the ground
state and first isomer). A similar argument (involving
the deformation splitting, Landau fragmentation and
contributions of shape isomers) was recently used to
explain the experimental E1 optical response in de-
formed sodium clusters with 50 < Ne < 60 [22].

Less shape isomerism will be provided by the SM
in metal clusters deposited on insulating substrates [28].
These clusters are oblate and their mean size and mag-
nitude of the deformation can be well controlled. Such
clusters seem to be the most promising systems for exper-
imental search of the SM.

6 Magnetic anisotropy

The static orbital magnetism in clusters was widely stud-
ied during the last decades. The studies were mainly based
on the Landau theory of the atomic magnetism [29]. Ap-
plied to clusters, they covered a variety of issues: giant dia-
and para-magnetism in weak magnetic fields [30,31], size
and temperature effects [32,33], manifestation of quan-
tum supershells in magnetic susceptibility [33], influence
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of cluster shape (both axial and triaxial) on the magnetic
properties [1,2], anisotropy of magnetic susceptibility in
deformed clusters [1,2], orbital magnetism of supported
clusters [3], etc. The relation of the van Vleck paramag-
netism with the SM was established in [1].

Despite all these studies, some subtle and interesting
points of the orbital magnetism were not yet considered.
In this section we will discuss the new effect of dia-para
anisotropy in the magnetic susceptibility, which can be
found in particular light sodium clusters. RPA calcula-
tions [4] show that the SM energies and B(M1) strengths
scale with the deformation δ2 and the electron number Ne,
basically according to the trends (2) and (3). Strong fluc-
tuations, however, take place in small clusters [4]. They
reflect the 1ph nature of the transitions and may affect
the magnetic susceptibility thus causing in particular cases
the dia-para anisotropy.

The interaction of cluster valence electrons with a
uniform magnetic field Bk applied along the coordinate
axis k is

Ĥint = µbBkL̂k +
1
2
µ2

bB
2
kρ2

k (14)

where k = x, y, z is the coordinate index, L̂k =
∑Ne

a=1 L̂
(a)
k

is the kth projection of the angular moment operator (the
sum runs over all valence electrons), ρ2

z =
∑Ne

a=1(x
2
a + y2

a),
ρ2

x =
∑Ne

a=1(y
2
a + z2

a), and ρ2
y =

∑Ne
a=1(x

2
a + z2

a). We ne-
glected in (14) electron spins because their contribution to
the magnetic susceptibility is expected to be sufficiently
small for the clusters considered below (axial sodium clus-
ters with even Ne and completely filled Fermi level).

If the magnetic field is weak, one can use the pertur-
bation theory. Up to the second order to Bk, the induced
change of the ground state energy is

ωint
0 = µbBk〈0|L̂k|0〉 − µ2

bB
2
k

∑
j �=0

|〈j|L̂k|0〉|2
ωj

+
1
2
µ2

bB
2
kNeρ2

k (15)

where ωj is the energy of the excited state |j〉 and ρ2
k is

the average value of ρ2
k. The negative second and positive

third terms in (15) are responsible for the temperature
independent van Vleck paramagnetism and Langevin dia-
magnetism, respectively.

The first linear term in (15) dominates in systems with
a partly filled Fermi level because in this case we have not
the complete mutual compensation of the contributions of
valence electrons with different orbital projections Λ. The
linear term then leads to strong paramagnetic moments
µ = µb|Λ| in axial clusters with odd Ne [2]. In magic
spherical clusters where the Fermi level is fully occupied,
both the first linear and second quadratic terms are zero
and the clusters are thus diamagnetic [2]. Such diamag-
netism is called giant [31] since, due to ρ2

k 	 a2
0 (a0 is the

Bohr radius), it is much stronger than the atomic one.
We will consider z-axial deformed clusters with

even Ne and fully occupied Fermi level. In this case, the

linear term in (15) is zero and the van Vleck contribu-
tion takes place for k = x, y only. The orbital magnetic
susceptibility χk = −∂2ωint

0 /∂B2
k is then the sum of the

Langevin diamagnetic and van Vleck paramagnetic terms:

χk = χdia
k + χpara

k , (16)

where

χdia
k = −µ2

bNeρ2
k〉 = −µ2

bΘ
R
k , (17)

χpara
k = 2µ2

b

∑
j �=0

|〈j|L̂k|0〉|2
ωj

= µ2
bΘk, (18)

having denoted by

Θk = 2
∑
j �=0

|〈j|L̂k|0〉|2
ωj

(19)

and
ΘR

k = Neρ2
k (20)

the cranking and rigid moments of inertia, respectively.
Note that for k = x, y the operator entering into the

matrix element in (18) is exactly the scissors generator.
This hints that just the low-energy SM mainly contributes
to χpara

x,y . Indeed, Table 2 shows that the contribution of
the low-energy scissors mode to the value S−1 ∼ χpara

k
achieves 85−100%. So, the SM dominates the van Vleck
paramagnetism.

In the schematic model [1], the moment of inertia ac-
quires the rigid-body value such that Θx,y = ΘR

x,y and
thus χpara

x,y = −χdia
x,y, i.e. we have a complete compensa-

tion of dia- and paramagnetic terms in (16). Due to the
axial symmetry, one also has χpara

z = 0. The total suscep-
tibility becomes, therefore, strictly anisotropic [1]

χx = χy = 0, χz = χdia
z , (21)

varying from zero to diamagnetic values.
On the other hand, strong shell effects in particular

light clusters may alter appreciably the above result. This
is illustrated for Na+

27 in Figure 6. The SM in this clus-
ter has very low excitation energy (see Fig. 2) and an
exceptionally large value of S−1 (see Tab. 2). Thus the
paramagnetic susceptibility is enhanced considerably and
is no longer compensated by the diamagnetic term. So,
Na+

27 should be paramagnetic in x, y-directions and dia-
magnetic in z-direction. The cluster Na+

11 also hints this
property.

The competition between dia- and paramagnetic con-
tributions to the magnetic susceptibilities χk was quan-
titatively considered earlier in the Kohn-Sham-Nilsson
model [2]. Nearly a complete balance χpara

x,y = −χdia
x,y was

found for the axial cluster Na26 while other even axial clus-
ters were shown to exhibit a steady diamagnetism. This
result evidently correlates with our calculations. Besides,
the dia-para anisotropy in Na+

27 was earlier predicted in
the Woods-Saxon model [14]. The fact that quite different
models yield similar results for Na clusters with Ne = 26
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means that the dia-para anisotropy in Na+
27 can be in-

deed the case. The magnetic moments in Na+
27 are suffi-

ciently large to be measured. Observation of the dia-para
anisotropy would provide a strong (though indirect) evi-
dence of the SM in clusters.

7 Experimental perspectives

7.1 General analysis

As was mentioned in the introduction, the SM is not yet
observed experimentally in metal clusters. The search of
the SM is hindered by several factors:

(1) the mode has very low photo-absorption cross-section.
Following our results, in Na clusters with Ne �
10−102, σ(M1)/Ne � 10−5−10−7 Å2 as compared
to σ(E1)/Ne � 2 Å2 for the dipole plasmon. Such
a weak M1 signal is at the edge of the sensitivity of
modern detectors;

(2) equations (10–13) allow to estimate the ratios for the
maximal optical responses as

σ(E1)/σ(M1) = 0.35 × 105 Å
−2

(
rs

δ2

)2

(22)

and (for ωE2 � 3 eV [19,20])

σ(E2)/σ(M1) = 0.82× 10−2 Å
−4

(
r2
s

δ2

)2

N2/3
e . (23)

This gives for deformed (δ2 = 0.2) sodium (rs =
2.1 Å) clusters σ(E1)/σ(M1) � 4 × 106 and
σ(E2)/σ(M1) � 102 (the latter for Ne = 125). So,
the SM suffers from the competition with E1 and
E2 strengths. Besides, the competition with E2 in-
creases with cluster size. The above estimates compare

the SM optical response with the maximal responses
of E1 and E2 plasmons. As is shown in the next
subsection, the competition is much weaker in the
low-energy region where the SM has its stronghold,
but one has still to be aware of large amounts of
E1 strength;

(3) the low-energy SM lies in the infrared region where
commonly used detectors are not efficient enough;

(4) the SM energy decreases with cluster size and reaches
the region of phonon excitations, ∼0.1 eV in clusters
with Ne ∼ 103 [34];

(5) at the first glance, temperature effects may hinder the
SM. Indeed, the typical temperature is ∼100 K �
0.01 eV. In deformed clusters with Ne = 103−104,
such a temperature is larger than the average energy-
level spacing (∼10−4 eV). So the temperature-
independent van Vleck paramagnetism provided by
the SM should transfer to the temperature-dependent
Curie one. However, this does not mean the disap-
pearance of the SM but only the reduction of the
SM contribution to χpara

k . What is more important,
the temperature is safely below the SM energy and so
the SM mode should survive. Indeed, the SM is de-
termined by the deformation splitting (which can be
fixed and kept large, see below the discussion for de-
posited clusters) but not by the energy-level spacing.

In spite of the hindrances listed above, clusters offer
enough opportunities to look for the optimal conditions
for observing the SM: one may change cluster size and (or)
deformation, use different metals, choose between free and
supported clusters, etc. The macroscopic estimates (2–3)
and the present jellium RPA calculations may serve as a
guide. The corresponding analysis is done below. Sodium
clusters with a moderate deformation δ2 = 0.2 are consid-
ered as a typical example. Following the estimation (2),
their SM energy is ω � 1 × N

−1/3
e eV.

Heavy clusters look promising because the M1 photo-
absorption cross-section grows linearly with size. Already
in deformed clusters with Ne = 104−106 the scissors sig-
nal should be detectable. Unfortunately, the correspond-
ing energy ω � 0.05−0.01 eV approaches and even enters
the region of phonon excitations. Thus the best compro-
mise for free sodium clusters is achieved at the size of
several thousands atoms. Besides that, these clusters are
large enough to ensure the dominance of the orbital scis-
sors mode over spin M1 excitations.

We may also look for clusters of larger density and
deformation to increase the energy and the strength of
the mode. For example, Li clusters (rs = 1.7 Å) allow
one to increase both the energy and optical response by
a factor of ∼1.5 with respect to Na (rs = 2.1 Å). Fur-
ther improvement may be achieved with Ag (rs = 1.6 Å),
Mg (rs = 1.4 Å), or Al (rs = 1.1 Å). In any case,
highly deformed clusters are welcome because σ(M1) ∼ δ2

2

and ω ∼ δ2.
In general, free clusters seem not suitable for observ-

ing the SM. They are well mass-separated only up to
sizes of hundred atoms. However, these systems have a
weak M1 signal. As for heavier clusters, they suffer from
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a poor mass separation and are expected to be weakly de-
formed [26]. Moreover, as was discussed in Section 5, their
M1 signal is a statistical mix of contributions of different
shapes given by the ground state and isomers.

Deposited clusters look more promising. One can
adopt techniques that allow to get oblate clusters (Na
and Ag) on dielectric surfaces [28] and, more remark-
ably, to monitor their size and deformation. Clusters with
102−106 atoms can be used for this aim. In this way,
one can obtain supported clusters of a desired size and
shape. High density of clusters on the surface gives good
statistics in the measurements. Last but not least, mon-
itoring the shape of clusters gives the chance to use the
trends σ(M1) ∼ δ2

2 and ωM1 ∼ δ2 to distinguish the SM
from the E1 and E2 signals. To this end, one has to ir-
radiate clusters of the same size but of different defor-
mations. Then the low-energy E1 and E2 cross-sections
are also affected but, hopefully, in an irregular fashion.
Thus their signal should be averaged out or at least show
trends which differ from that of the SM. The cross-sections
measured at different deformations can be mutually sub-
tracted to extract a small, and yet useful, signal. For the
analysis of such experiments, we need accurate theoreti-
cal estimates accounting for all the main factors and, in
particular, for the influence of the surface on the electric
and scissors plasmons. Such work is in progress.

The competition with E1 and E2 modes may be sup-
pressed partially by resorting to specific reactions and
techniques capable of hindering if not suppressing the E1
and E2 channels. We will discuss this issue for three rele-
vant reactions: photo-absorption, resonance Raman scat-
tering, and inelastic electron scattering.

7.2 Photo-absorption

The SM lies much lower than the dipole and quadrupole
plasmon modes (0.2−1.0 eV against 2.5−3.0 eV for the
dipole and 2−4 eV for the quadrupole plasmons [19,20]).
In principle, one could exploit this energy separation to
focus on the SM. However, its M1 photo-absorption cross-
section is still very small as compared to the E1 strength
and it can be masked by the tail of close-by E1 modes.
This is illustrated in Figure 7 which compares E1, E2
and M1 photo-absorption strengths calculated within the
SRPA approach [20] in the axially deformed ground state
of Na+

119. The E1 strength, although extremely small com-
pared to the dipole plasmon peak, is still strong enough to
mask the SM. The influence of the quadrupole E2 strength
in Na+

119 is negligible (but may be stronger in heavier
clusters).

The competition with the E1 channel can be de-
creased by using deformed (oblate) clusters with N �
103−104 atoms, supported on dielectric surfaces, and
adopting infrared techniques with the polarized light. For
the SM, the magnetic field of the incoming light should
be parallel to the surface. This can be done with both s-
and p-polarizations (with the electrical field perpendicu-
lar and parallel to the incident plane, respectively). The
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Fig. 7. Photo-absorption E1, E2 and scissors cross-sections
in Na+

119 weighted by the Lorentz function with the averaging
parameter 0.25 eV. The E1 µ = 0 and 1 branches are given sep-
arately to show their relative contributions to the competition
with the scissors mode.

s-polarized light under an angle ∼0◦ with the surface nor-
mal suppresses the µ = 0 E1 branch without weakening
the SM. The p-polarized light at angle ∼90◦ suppresses
the µ = 1 E1 branch, again without weakening the SM.
The second variant seems to be preferable since the µ = 1
branch is generally stronger (see, e.g., Fig. 7). Unfor-
tunately, the polarization does not allow suppression of
both dipole branches simultaneously. It only weakens but
does not avoid completely the strong competition with the
dipole excitations.

7.3 Resonant Raman scattering

In resonance Raman scattering (inelastic scattering of po-
larized photons), the SM may be populated through the
de-excitation of the dipole plasmon excited by the incom-
ing photon. The difference between energies of incoming
and outgoing photons gives the energy of the SM. One
needs to look at E1 decays, which represent the lead-
ing channel and may populate in deformed systems M1
and E2 states. With respect to photo-absorption, reso-
nance Raman scattering has the advantage of excluding
the competition with the strong E1 mode and to work
with visible light. An experiment of this kind was carried
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out on supported Ag clusters [35]. The analysis of the data
suggested, however, that the E2 rather than the SM was
populated through the E1 decay. On the other hand, it is
not simple to separate E2 and M1 modes which are mixed
in deformed systems.

7.4 Inelastic electron scattering

Inelastic electron scattering is also a promising technique.
At backward scattering angles, the M1 signal can prevail
over the electric ones. This property enabled the discovery
of the scissors mode in deformed atomic nuclei [8]. Polar-
ization of the electrons provides additional possibilities
to extract the magnetic response. In nuclear physics, elec-
trons with very high energies (tens and hundreds MeV) are
used, which favors creation of well collimated, intense and
monochromatic electron beams. Moreover, at such high
energies, there is no problem enhancing sufficiently the
relative contribution of the transversal form factor.

The low-energy electron beams and the angular
resolved techniques, suitable for our purpose, are now
available in the framework of the electron energy loss spec-
troscopy (EELS), see, e.g. [36]. To our knowledge, EELS
was not used so far for observation in metal clusters of any
plasmons except the dipole one. At the same time, theo-
retical estimates [37–39] show that at certain scattering
angles the dipole contribution can be well suppressed in
favor of the quadrupole plasmon, which, therefore, can be
observed. From the latter analysis, we may infer that also
the SM may be extracted. Indeed, in the low-energy region
the SM can be stronger excited in the photo-absorption
than the E2 mode.

8 Conclusions

The scissors mode (SM) in axially deformed sodium
clusters has been studied within a self-consistent RPA ap-
proach based on the soft jellium model for the ionic back-
ground and density-functional theory for the electrons.
The calculations show that the distribution of the low-
energy scissors strength is dominated by 1ph states with
only small shifts by the residual interaction. The SM thus
reflects almost directly the density of 1ph M1 transitions
near the Fermi surface and exhibits an extreme sensitivity
to the actual deformation. The SM is rather unambiguous
in light clusters (Ne < 40) while it should be a statis-
tical mix of contributions from different shapes in heav-
ier clusters. Furthermore, the high-energy branch of the
SM in deformed systems is coupled with the quadrupole
plasmon.

The calculations show that the SM determines the
van Vleck paramagnetism and results in a strong
anisotropy of the magnetic susceptibility. Moreover, due to
quantum shell effects, some clusters (Na+

27) demonstrate
dia-para anisotropy where the axial cluster is diamag-
netic along the symmetry axis and paramagnetic along the
other two axes. The magnetic moments are large enough

to be measured. The experimental observation of the dia-
para anisotropy, being interesting itself, could also serve
as an indirect evidence of the SM in clusters.

A general analysis of possible routes for experimental
observation of the scissors mode was presented. Photo-
absorption with polarized light, inelastic electron scatter-
ing and Raman scattering were considered. The electron
scattering seems to be the most promising tool. Moreover,
deposited clusters favor the detection of the SM as com-
pared to free ones. Its features need yet to be worked out
in detail. Work in that direction is in progress.

The work was partly supported (V.O.N.) by RFBR (00-02-
17194), Heisenberg-Landau (Germany-BLTP JINR) and DFG
(436RUS17/102/01) grants.

References

1. E. Lipparini, S. Stringari, Phys. Rev. Lett. 63, 570 (1989);
Z. Phys. D 18, 193 (1991)

2. S. Frauendorf, V.V. Pashkevich, S.M. Reimann, Surf. Rev.
Lett. 3, 441 (1996)

3. C. Binns, Surf. Sci. Rep. 44, 1 (2001)
4. V.O. Nesterenko, W. Kleinig, F.F. de Souza Cruz, N.

Lo Iudice, Phys. Rev. Lett. 83, 57 (1999)
5. P.-G. Reinhard, V.O. Nesterenko, E. Suraud, S.

El Gammal, W. Kleinig, Phys. Rev. A 66, 013206 (2002)
6. V.O. Nesterenko, J.R. Marinelli, F.F. de Souza Cruz, W.

Kleinig, P.-G. Reinhard, Phys. Rev. Lett. 85, 3141 (2000)
7. N. Lo Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978)
8. D. Bohle et al., Phys. Lett. B 137, 27 (1984)
9. N. Lo Iudice, Phys. Part. Nucl. Phys. 28, 556 (1997)

10. Ll. Serra, A. Puente, E. Lipparini, Phys. Rev. B 60,
R13966 (1999)

11. A. Minguzzi, M.P. Tosi, Phys. Rev. A 63, 023609 (2001)
12. D. Guéri, S. Stringari, Phys. Rev. Lett. 83, 4452 (1999)
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